The Long-Time Behavior of the Ricci Tensor under the Ricci Flow

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensional Reduction and the Long-time Behavior of Ricci Flow

If g(t) is a three-dimensional Ricci flow solution, with sectional curvatures that are O(t) and diameter that is O(t 1 2 ), then the pullback Ricci flow solution on the universal cover approaches a homogeneous expanding soliton.

متن کامل

Positivity of Ricci Curvature under the Kähler–ricci Flow

An invariant cone in the space of curvature operators is one that is preserved by a flow. For Ricci flow, the condition R ≥ 0 is preserved in all dimensions, while the conditionR ≤ 0 is preserved only in real dimension two. Positive curvature operator is preserved in all dimensions [11], but positive sectional curvature is not preserved in dimensions four and above. The known counterexamples, c...

متن کامل

Curvature Tensor under the Complete Non-compact Ricci Flow

We prove that for a solution (M, g(t)), t ∈ [0, T ), where T < ∞, to the Ricci flow on a complete non-compact Riemannian manifold with the Ricci curvature tensor uniformly bounded by some constant C on M × [0, T ), the curvature tensor stays uniformly bounded on M × [0, T ).

متن کامل

Mass Under the Ricci Flow

In this paper, we study the change of the ADM mass of an ALE space along the Ricci flow. Thus we first show that the ALE property is preserved under the Ricci flow. Then, we show that the mass is invariant under the flow in dimension three (similar results hold in higher dimension with more assumptions). A consequence of this result is the following. Let (M, g) be an ALE manifold of dimension n...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry

سال: 2013

ISSN: 2314-422X,2314-4238

DOI: 10.1155/2013/235436